Study of ²²Ne(⁶Li,t)²⁵Mg three particle transfer reaction using TIARA and MDM spectrometer.

The (6 Li, t) transfer reaction serves as a powerful tool to study 3 He clustering states. Furthermore, for N=Z target nuclei (6 Li,t) and (6 Li, 3 He) are expected to populate mirror states in the resulting recoil nuclei, due to the strong 3 He + 3 H clustering property of 6 Li. There is also potential to study nuclear structures by three particle transfer, e.g., using a radioactive ion beam, which can be a useful method for nuclear astrophysics. The 22 Ne(6 Li,t) 25 Mg experiment was performed in inverse kinematics using a 7 AMeV 22 Ne beam and 6 LiF target at the Texas A&M University Cyclotron Institute. To better understand (6 Li, t) three particle transfer reaction, measurements of 25 Mg, t, and gamma-rays were made in coincidence using a magnetic spectrometer, Si, and Ge detectors. By doing this, the populated states of 25 Mg were clearly identified thus enabling an understanding of the reaction selectivity. The angular differential cross sections were then measured to extract the spectroscopic factors. The results of this 22 Ne(6 Li, 6 Li, 7 Li Mg analysis were compared with data from other reaction methods and theoretical calculations to improve the knowledge about the 22 Ne(6 Li, 7 Li Mg reaction.